Python Data Science Stack
Comprehensive data analysis and visualization with pandas, numpy, and matplotlib
# Python Data Science
This document provides comprehensive guidelines for python data science development and best practices.
---
## NumPy Fundamentals
1. **N-dimensional**
- N-dimensional array operations
- Implement proper n-dimensional array operations
- Follow best practices for optimal results
2. **Broadcasting**
- Broadcasting and vectorization
- Implement proper broadcasting and vectorization
- Follow best practices for optimal results
3. **Mathematical**
- Mathematical functions and linear algebra
- Implement proper mathematical functions and linear algebra
- Follow best practices for optimal results
4. **Random**
- Random number generation
- Implement proper random number generation
- Follow best practices for optimal results
5. **Array**
- Array indexing and slicing
- Implement proper array indexing and slicing
- Follow best practices for optimal results
---
## Pandas Data Manipulation
6. **DataFrame**
- DataFrame and Series operations
- Implement proper dataframe and series operations
- Follow best practices for optimal results
7. **Data**
- Data loading from various sources (CSV, JSON, SQL)
- Implement proper data loading from various sources (csv, json, sql)
- Follow best practices for optimal results
8. **Data**
- Data cleaning and preprocessing
- Implement proper data cleaning and preprocessing
- Follow best practices for optimal results
9. **Missing**
- Missing data handling strategies
- Implement proper missing data handling strategies
- Follow best practices for optimal results
10. **Data**
- Data type optimization
- Implement proper data type optimization
- Follow best practices for optimal results
---
## Data Exploration
11. **Descriptive**
- Descriptive statistics and summaries
- Implement proper descriptive statistics and summaries
- Follow best practices for optimal results
12. **Data**
- Data profiling and quality assessment
- Implement proper data profiling and quality assessment
- Follow best practices for optimal results
13. **Correlation**
- Correlation analysis
- Implement proper correlation analysis
- Follow best practices for optimal results
14. **Outlier**
- Outlier detection and treatment
- Implement proper outlier detection and treatment
- Follow best practices for optimal results
15. **Exploratory**
- Exploratory data analysis (EDA)
- Implement proper exploratory data analysis (eda)
- Follow best practices for optimal results
---
## Data Transformation
16. **Filtering**
- Filtering and querying data
- Implement proper filtering and querying data
- Follow best practices for optimal results
17. **Groupby**
- Groupby operations and aggregations
- Implement proper groupby operations and aggregations
- Follow best practices for optimal results
18. **Pivot**
- Pivot tables and crosstabs
- Implement proper pivot tables and crosstabs
- Follow best practices for optimal results
19. **Merging**
- Merging and joining datasets
- Implement proper merging and joining datasets
- Follow best practices for optimal results
20. **Reshaping**
- Reshaping data (melt, stack, unstack)
- Implement proper reshaping data (melt, stack, unstack)
- Follow best practices for optimal results
---
## Time Series Analysis
21. **DateTime**
- DateTime indexing and resampling
- Implement proper datetime indexing and resampling
- Follow best practices for optimal results
22. **Time-based**
- Time-based operations and rolling windows
- Implement proper time-based operations and rolling windows
- Follow best practices for optimal results
23. **Seasonal**
- Seasonal decomposition
- Implement proper seasonal decomposition
- Follow best practices for optimal results
24. **Trend**
- Trend analysis and forecasting
- Implement proper trend analysis and forecasting
- Follow best practices for optimal results
25. **Working**
- Working with different time zones
- Implement proper working with different time zones
- Follow best practices for optimal results
---
## Data Visualization
26. **Matplotlib**
- Matplotlib for basic plotting
- Implement proper matplotlib for basic plotting
- Follow best practices for optimal results
27. **Seaborn**
- Seaborn for statistical visualizations
- Implement proper seaborn for statistical visualizations
- Follow best practices for optimal results
28. **Plotly**
- Plotly for interactive charts
- Implement proper plotly for interactive charts
- Follow best practices for optimal results
29. **Best**
- Best practices for effective visualization
- Implement proper best practices for effective visualization
- Follow best practices for optimal results
30. **Dashboard**
- Dashboard creation with Streamlit
- Implement proper dashboard creation with streamlit
- Follow best practices for optimal results
---
## Statistical Analysis
31. **Hypothesis**
- Hypothesis testing
- Implement proper hypothesis testing
- Follow best practices for optimal results
32. **Confidence**
- Confidence intervals
- Implement proper confidence intervals
- Follow best practices for optimal results
33. **Regression**
- Regression analysis with statsmodels
- Implement proper regression analysis with statsmodels
- Follow best practices for optimal results
34. **ANOVA**
- ANOVA and chi-square tests
- Implement proper anova and chi-square tests
- Follow best practices for optimal results
35. **Distribution**
- Distribution fitting and testing
- Implement proper distribution fitting and testing
- Follow best practices for optimal results
---
## Machine Learning Integration
36. **Scikit-learn**
- Scikit-learn for traditional ML
- Implement proper scikit-learn for traditional ml
- Follow best practices for optimal results
37. **Feature**
- Feature engineering and selection
- Implement proper feature engineering and selection
- Follow best practices for optimal results
38. **Model**
- Model evaluation and cross-validation
- Implement proper model evaluation and cross-validation
- Follow best practices for optimal results
39. **Pipeline**
- Pipeline creation for reproducibility
- Implement proper pipeline creation for reproducibility
- Follow best practices for optimal results
40. **Hyperparameter**
- Hyperparameter tuning
- Implement proper hyperparameter tuning
- Follow best practices for optimal results
---
## Big Data Tools
41. **Dask**
- Dask for parallel computing
- Implement proper dask for parallel computing
- Follow best practices for optimal results
42. **Vaex**
- Vaex for out-of-core processing
- Implement proper vaex for out-of-core processing
- Follow best practices for optimal results
43. **Apache**
- Apache Spark with PySpark
- Implement proper apache spark with pyspark
- Follow best practices for optimal results
44. **Memory**
- Memory optimization techniques
- Implement proper memory optimization techniques
- Follow best practices for optimal results
45. **Chunked**
- Chunked data processing
- Implement proper chunked data processing
- Follow best practices for optimal results
---
## Jupyter Notebook Best Practices
46. **Notebook**
- Notebook organization and structure
- Implement proper notebook organization and structure
- Follow best practices for optimal results
47. **Code**
- Code cell optimization
- Implement proper code cell optimization
- Follow best practices for optimal results
48. **Markdown**
- Markdown documentation
- Implement proper markdown documentation
- Follow best practices for optimal results
49. **Version**
- Version control for notebooks
- Implement proper version control for notebooks
- Follow best practices for optimal results
50. **Reproducible**
- Reproducible research practices
- Implement proper reproducible research practices
- Follow best practices for optimal results
---
## Data Pipeline Development
51. **ETL**
- ETL pipeline creation
- Implement proper etl pipeline creation
- Follow best practices for optimal results
52. **Data**
- Data validation and quality checks
- Implement proper data validation and quality checks
- Follow best practices for optimal results
53. **Automated**
- Automated data processing workflows
- Implement proper automated data processing workflows
- Follow best practices for optimal results
54. **Error**
- Error handling and logging
- Implement proper error handling and logging
- Follow best practices for optimal results
55. **Scheduling**
- Scheduling with Apache Airflow
- Implement proper scheduling with apache airflow
- Follow best practices for optimal results
---
## Performance Optimization
56. **Vectorization**
- Vectorization over loops
- Implement proper vectorization over loops
- Follow best practices for optimal results
57. **Memory**
- Memory usage optimization
- Implement proper memory usage optimization
- Follow best practices for optimal results
58. **Parallel**
- Parallel processing with multiprocessing
- Implement proper parallel processing with multiprocessing
- Follow best practices for optimal results
59. **Cython**
- Cython for performance-critical code
- Implement proper cython for performance-critical code
- Follow best practices for optimal results
60. **Profiling**
- Profiling and bottleneck identification
- Implement proper profiling and bottleneck identification
- Follow best practices for optimal results
---
## Database Integration
61. **SQL**
- SQL queries with pandas
- Implement proper sql queries with pandas
- Follow best practices for optimal results
62. **SQLAlchemy**
- SQLAlchemy for database connections
- Implement proper sqlalchemy for database connections
- Follow best practices for optimal results
63. **NoSQL**
- NoSQL database integration
- Implement proper nosql database integration
- Follow best practices for optimal results
64. **Data**
- Data warehousing concepts
- Implement proper data warehousing concepts
- Follow best practices for optimal results
65. **Cloud**
- Cloud database connectivity
- Implement proper cloud database connectivity
- Follow best practices for optimal results
---
## Deployment & Production
66. **API**
- API development with FastAPI
- Implement proper api development with fastapi
- Follow best practices for optimal results
67. **Containerization**
- Containerization for reproducibility
- Implement proper containerization for reproducibility
- Follow best practices for optimal results
68. **Cloud**
- Cloud deployment strategies
- Implement proper cloud deployment strategies
- Follow best practices for optimal results
69. **Monitoring**
- Monitoring data pipelines
- Implement proper monitoring data pipelines
- Follow best practices for optimal results
70. **A/B**
- A/B testing frameworks
- Implement proper a/b testing frameworks
- Follow best practices for optimal results
---
## Summary Checklist
- [ ] Core principles implemented
- [ ] Best practices followed
- [ ] Performance optimized
- [ ] Security measures in place
- [ ] Testing strategy implemented
- [ ] Documentation completed
- [ ] Monitoring configured
- [ ] Production deployment ready
---
Follow these comprehensive guidelines for successful python data science implementation.